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Abstract
Many applications requiring both spectral and spatial information at high resolution benefit from spectral imaging.
Although different technical methods have been developed and commercially available, computational spectral
cameras represent a compact, lightweight, and inexpensive solution. However, the tradeoff between spatial and
spectral resolutions, dominated by the limited data volume and environmental noise, limits the potential of these
cameras. In this study, we developed a deeply learned broadband encoding stochastic hyperspectral camera. In
particular, using advanced artificial intelligence in filter design and spectrum reconstruction, we achieved 7000–11,000
times faster signal processing and ~10 times improvement regarding noise tolerance. These improvements enabled us
to precisely and dynamically reconstruct the spectra of the entire field of view, previously unreachable with compact
computational spectral cameras.

Introduction
Spectral imaging provides a powerful sensing method

for science, where spectral and spatial detection is
simultaneously expected. Its applications include art
conservation1, astronomy2, earth remote sensing3, bio-
medical engineering4, and atmospheric science5. How-
ever, traditional spectral imaging instruments have bulky
mechanics for spectral dispersion6. Moreover, either
spatial or spectral scanning is essential to generate a
three-dimensional (3D) spectral-spatial data cube. These
scanning processes dramatically extend the acquisition
time. To overcome these limitations, the so-called
“snapshot” computational spectral imaging technique
was proposed7–10. In this regard, the basic idea was to
place a coded mask in front of the dispersion prism9.
However, this approach failed to reduce the volume
because of its complex optical scheme. A more effective

solution10,11 was to apply random spectral filters, which
were initially developed for the spectrometer12–14. In
contrast to classic optical filters with unique or multiple
passing bands, random spectral filters refer to an array of
filters featuring irregular and unrelated transitions/
reflections12. Integrating these random spectral filters into
cameras simultaneously with advanced computational
algorithms allows the reconstruction of more spectral
bands with fewer detection channels.
Nevertheless, the efficiency of the algorithm becomes

the key driver of the snapshot system’s performance. The
algorithms currently applied in these spectral cameras are
generally extensions of the compressive sensing (CS)
concept15. These methods require a sufficient number of
random spectral filters to guarantee spectral resolution.
For example, the hyperspectral cameras developed in
previous studies10,11 usually have 25 or more filters to
cover the entire visible region. Furthermore, these CS-
based methods obtain sufficiently convergent results
through an iterative process. Consequently, they are time-
consuming, limiting the possible output data volume of
the spectral camera. Therefore, the snapshot methods
always have to sacrifice the spatial resolution to maintain
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a high reconstruction precision of the spectrum or vice
versa. However, the derivation fails even under low-level
noise. Extra efforts to digitally handle noise could extend
the computing time and might induce artifacts if they are
not appropriately employed.
Recently, deep learning methods have been adopted to

improve reconstruction accuracy and speed16,17. How-
ever, their hardware still suffers from the large volume
due to the coded mask and prism. For the compact
random filter design, some deep learning approaches
have been developed for both the target response defi-
nition18,19 and inverse design20–23. These methods work
to some extent; however, none of them comprehen-
sively considered both procedures. As such, their results
are compromised either by the producibility of the
designed spectral responses or by the sensitivity to the
fabrication error24.
To address the problems of computational speed, noise

tolerance, and filter design, we develop a new hyper-
spectral camera, namely broadband encoding stochastic
(BEST) camera, based on a deep neural network (DNN)25

for both the filter design and the spectrum reconstruction.
This study is organized as follows. First, we introduce the
schematic of the BEST camera and address the filter
design problem. Subsequently, we analyze the recon-
struction speed and noise tolerance advantage of the
proposed DNN. Then, we verify our proposal on two
hyperspectral imaging architectures: passive mode (mea-
suring the spectral radiance) and active mode (measuring
the spectral reflectance). Finally, we discuss the reliability
of our systems and summarize our work.

Results
Schematic of BEST camera
A simplified schematic of the proposed device is shown

in Fig. 1a. The proposed BEST camera is built using 16
random spectral filters. It has both active and passive
modes. For the active mode, the filtered illumination
spectrum encodes the sample; thus, the device detects the
spectral reflectance of the sample Sðλ; x; yÞ. For the pas-
sive mode, the spectrum reflected by the sample is
encoded by the filters; thus, the device detects the spectral
radiance of the reflected light LðλÞSðλ; x; yÞ. These filters
were designed considering the parameter constrained
spectral encoder and decoder (PCSED) method24 and
fabricated by an electronic beam evaporator. In particular,
as an extension of DNN for designing random spectral
filters, PCSED focuses on obtaining the optimal spectral
responsivity for each random spectral filter in the group,
while ensuring their producibility. In brief, PCSED verifies
large volumes of data to understand coating behaviors.
Without manual intervention, it provides the coating
design combinations maximizing the spectral resolution
that are not apparent to humans. Using this strategy, we

designed the proposed BEST camera with only 16 filters,
corresponding to 40–60% fewer than those in previous
studies10,11. The respective spectra and design details are
available in Supplementary Information S1.

Advantages of applying DNN
To extract the exact spectrum from these random

spectral filters with rich features, we used the DNN for
data processing (“Methods” section and Fig. 1b), which
provides two major improvements over the original CS
algorithms. First, the spectrum reconstruction speed can
be orders of magnitude faster. This substantial accelera-
tion is rooted, because the iterative algorithm solves an
optimization problem for each pixel, whereas the DNN
operates matrix multiplexing. The latter is especially
suitable for parallel computing using a graphic processing
unit (GPU). Therefore, for the iterative algorithm, the
reconstruction time of a spectral image increases with
increasing pixel number. However, the reconstruction
speed of the DNN is almost pixel-independent. Although
the speed is still comparable when the image only includes
several thousand or fewer pixels, DNN is advantageous
for images with higher resolution. To quantitatively
compare the performance of the above two algorithms,
we applied the proposed DNN to reconstruct a hyper-
spectral image (480 × 640 pixels, 1 nm spectral step size,
400–700 nm spectral scale) on an Intel Core i9-10900x
CPU, Nvidia GeForce 2080Ti GPU platform. The DNN
could generate such an image in 0.48 s. Although further
optimization is possible, the current speed level is suffi-
cient to perform real-time data reconstruction, as the
proposed recording frame rate is below 2 fps. In contrast,
reconstructing the same image using the basis pursuit
denoising algorithm (BPDN, a classic iterative CS algo-
rithm)26 requires 3307.3 s on the same computer plat-
form, nearly 7000 times slower than that of the proposed
DNN. Doubling the image size to 1280 × 480 pixels fur-
ther expands the diversity to 11,000 times (0.65 s for
DNN and 7219.2 s for gradient projection), which is
consistent with our prediction (see Supplementary
Information S2 for details).
Second, a well-trained DNN has better denoising abil-

ities, which can be readily obtained by adding more
samples with noise at different levels during training.
Moreover, adding noise has a regularization effect and, in
turn, further improves the robustness of the model. In CS
algorithms, however, denoising is largely experience-
dependent. In general, a variable parameter is manually
set during the iteration to cancel out the noise-induced
bias. This operation works to some extent; however, it
does not provide convincing results as long as the noise
level changes. On average, the DNN enhances noise tol-
erance by 8.14 times under different noise levels (see
Supplementary Information S3 for details).
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BEST camera in passive mode
We conducted a passive detection experiment to dis-

cern the target spectrum. Before illuminating the mono-
chrome camera, the incident light from the target was
modulated using random spectral filters (“Methods” and
Supplementary Information S4). To quantify the spectral
resolution of the proposed device, we measured the
wavelength of a laser beam selected by an acousto-optic
tunable filter (AOTF) from a white-light laser source. The
bandwidth of the single-wavelength laser beam after
AOTF was ~3.2 nm (full width at half maximum). Figure
1c–e presents a comparison of the reconstructed results
from the proposed device (solid line) and the ground truth
curves from a commercial spectrometer (Ocean Optics
FLAME-S, dashed line). Two DNNs with identical fra-
meworks were trained separately using two datasets (see
Supplementary Information S5 for details), to guarantee
the objectivity of the measurements. The first dataset
contained only the spectrum information from the
monochromatic light source, i.e., a laser beam. Moreover,
the output spectrum from the trained DNN was strictly
defined by a narrowband envelope. In this way (the

“precise” mode), the average localization precision of the
center wavelength in the reconstructed spectrum is
0.55 nm (Fig. 1c). In the “general” mode, we expanded the
training dataset to include more broadband spectral data.
In addition, we removed all the boundary conditions to
support arbitrary spectrum shapes. This strategy shows
comparable spectral localization precision at an average of
0.63 nm (Fig. 1d). However, it provides our camera with
the generality to satisfy different operational needs. Such
trained DNN allows a spectral resolution of ~5.2 nm
(Fig. 1e), sufficient for most hyperspectral imaging appli-
cations in practice. Regarding this fact, we used the DNN
working in “general” mode in the following experiments.
First, we used BEST camera to acquire a hyperspectral

image from a standard color calibration card (X-Rite
ColorChecker Classic Mini, Fig. 2a, b, e, f). For different
colors, the mean square error (MSE) between the mea-
sured (solid) and ground truth (dashed) spectra ranged
from 5 × 10−6 to 0.0032, with an average value of 0.0008.
All spectra considered 16 color patches, as shown in
Fig. 2a (see Supplementary Information S8). Compared to
these artificially standard samples, natural objects, such as
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Fig. 1 Principle and performance of BEST camera. a Simplified schematic. Depending on where the light spectrum is encoded, the camera can
work either in the active (upper) or passive (lower) modes. b Principle of DNN-based spectral reconstruction algorithm. The initial data captured by
the monochrome camera is fed into the DNN and outputs the reconstructed 3D hyperspectral data cube. c, d Spectral profiles of laser beams with
narrow bandwidth. In c, the DNN is trained by the “precise” dataset, whereas d is for the results from the DNN trained by “general” datasets. E Spectral
profile of two peaks corresponding to 598.0 nm and 603.2 nm. The peak-to-peak distance is highlighted in black. In c–e, the ground truths and the
DNN reconstructed results are represented by dashed (ground truth) and solid (reconstructed) curves, respectively. The graphs are normalized to
their peak intensity
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plants, represents a challenge for hyperspectral cameras.
These samples usually contain rich structure and color
details, requiring high spatial and high spectral resolutions
to recover. However, the proposed hyperspectral camera
overcomes this challenge by introducing DNN. Figure 2c,
d, g–j show the results. The average reconstruction MSE
is 0.0016, which is in good agreement with the previous
experiment. However, the results are now obtained from a
much more complex sample.

BEST camera in active mode
In addition to the passive model described above, the

DNN can be applied to active hyperspectral imaging
modes. Compared with passive cameras, active BEST
cameras excel at measuring spectral reflectance regardless
of the ambient illumination. To show the compatibility of
the proposed DNN, we set up an active hyperspectral
camera by placing a random spectral filter array in front of
white-light light-emitting diodes (LEDs) to modulate the
illumination light (“Methods” and Supplementary Infor-
mation S6). We sequentially turned on each LED during
the experiment and collected the reflected light from the

target using a monochrome camera. We selected a
watercolor painting (Fig. 3a) as the testing target. By
feeding all captured images (a total of 16 frames) into the
pre-trained DNN, we acquired its hyperspectral image, a
640 × 480 × 301 3D matrix. The results cover the entire
visible range (400–700 nm) at a step size of 1 nm. We
converted the spectral information into color space
(Fig. 3b and “Methods”) to improve visualization. The
retrieved image was highly consistent with the original
target. The example spectral profiles from the labeled
targets in Fig. 3b are presented in Fig. 3c–f. The MSE
between the measured (solid) and ground truth (dashed)
spectra was quantified at an average of 0.0010. Moreover,
in good agreement with the simulations, the spectra
reconstructed by the CS algorithm (gray lines in Fig. 3c–f)
have an average MSE of 0.0061, 6.1 times worse than the
DNN results.
The dimension of the active BEST cameras represents

the major limitation. As the light source requires extra
space, it is challenging to design and fabricate a compact
active device. Nevertheless, benefitting from the advances
of electronics technology, in particular, the surface-
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Fig. 2 Applications of BEST camera in passive mode. a Photo of the color patches from the standard color calibration board. An RGB camera was
used to take the photo. b Reconstructed spectral image (visualized in RGB form) of the color calibration card. Photo (c) and reconstructed spectral
image (d) of practical plant sample. e–j Spectral profiles at the positions denoted by the white squares in a–d. The ground truths (measured by a
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mounted devices, we compressed the dimensions of the
proposed active BEST camera to 28.5 × 13.6 × 7.15 mm3

by miniaturizing the modulated illumination array and
switching the monochrome charge-coupled device (CCD)
camera to a cell-phone RGB complementary metal-oxide-
semiconductor sensor (see Supplementary Information S7
for the details). These devices can potentially be inte-
grated into wearables or cell phones for portable appli-
cations, such as electronics and health care.

Discussion
The reliability of the output of the DNN was mainly

determined by the spectral response of each random
spectral filter. Any chromatic dispersion can severely
worsen the reconstruction precision. The proposed ran-
dom spectral filters were deposited by optical thin-film
coating. A metasurface can also be considered to reduce
the overlay steps during the production and pursue higher
integration with the spectral camera. However, main-
taining the optical properties such as transmittance/
reflection spectra of the metasurfaces is challenging,
especially when the polarization or the incident angle of

light changes. The sensitivities to the polarization and
incident angle, if not properly addressed, would narrow
the application scale of hyperspectral cameras. Although
the polarization effects are negligible for the thin-film
random spectral filters used in the proposed system, the
angular dispersion is still a force that should be con-
sidered. To compensate for the angular dispersion, we
calibrated the spectral transmittance of each random
spectral filter as a function of the light incident angle. In
addition, we substituted them into the spectrum retrieval
to improve the reconstruction precision (see Supple-
mentary Information S9 for details). This strategy is
beneficial for expanding the field-of-view or off-axis
imaging, where most of the light with a large incident
angle is present.
In summary, DNN enables us to capture hyperspectral

images with a high spatial resolution (>105 pixels) for
complex samples and to develop an improved algorithm
for spectral detection techniques. DNN allows a drama-
tically accelerated reconstruction to perform real-time
spectral reconstruction and noise reduction. Compared
with previous ones using CS algorithms, BEST camera

400 500 600 700

Wavelength (nm)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (
%

)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (
%

)

Ground truth

CS/GPSR (MSE = 0.0004)

DNN (MSE = 0.0001)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

400 500 600 700

Wavelength (nm)

Ground truth

CS/GPSR (MSE = 0.0145)

DNN (MSE = 0.0024)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (
%

)

0

20

40

60

80

100

R
ef

le
ct

an
ce

 (
%

)

Ground truth

CS/GPSR (MSE = 0.0009)

DNN (MSE = 0.0005)

Ground truth

CS/GPSR (MSE = 0.0088)

DNN (MSE = 0.0009)

c

a c e

b d f

d

e

f

c

d

e

f

Fig. 3 Applications of BEST camera in active mode. RGB photo (a) and reconstructed spectral images (b) of the watercolor painting sample.
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excels in several aspects (see Supplementary Information
S10 for details). Using our DNN to decode the spectrum
from random spectral filters is only one of the several
mechanisms in the computational spectroscopy family. In
general, the algorithm presented in this study can be
applied to techniques with similar purposes. This under-
scores the potential of applying our method to other
computational spectroscopy techniques, such as linear
X-ray spectroscopy and photoelectron spectroscopy27.
This study expands the application of DNNs for optics.
However, the functions discussed here, such as filter
design, calculation acceleration, and de-noise, are just
several possibilities. The entire potential of the technique
is still to be realized.
Finally, the proposed system detects the spectrum at

nanoscale resolution by computational spectroscopy and
represents an important step toward artificial intelligence
for optics.

Methods
DNN framework
The architecture of the DNN for spectral reconstruction

can be described as “16-(LR-FC-500)5-LR-FC-301-LR.”
Each number represents the number of units in the cor-
responding layer. LR indicates leaky ReLU units. FC
denotes a fully connected layer, and the superscript “5”
represents five repeat layers in the bracket. The input unit
number corresponds to 16 random spectral filters and the
output unit number 301 indicates the reconstructed
spectral channels (400–700 nm, 1 nm step).

Setup of passive BEST camera
In the passive BEST camera, the sample was imaged at

random spectral filters through the relay lens. The enco-
ded image was captured by a monochrome CCD camera
(Vieworks VH-310G2) immediately behind the filter
array. During the data acquisition process, 16 encoded
images of the samples were captured. Each image corre-
sponded to a specific filter of a random spectral filter
array. Finally, the spectral data cube was reconstructed
using DNN. A photograph of the experimental setup is
shown in Supplementary Fig. S3.

Setup of active BEST camera
In contrast to the passive one, the random spectral fil-

ters in the active BEST camera were placed in front of the
white-light LEDs (Luminus MP-3030-1100-56-95) to tune
the illumination light. During the data acquisition process,
each LED was sequentially turned on. A monochrome
CCD camera (Vieworks VH-310G2) was used to collect
the reflected light from the target. As the encoding
manner changes, the DNN is retrained using the data
collected by the active mode. A photograph of the
experimental setup is shown in Supplementary Fig. S5.

PCSED and filter design
During the filter design, PCSED focused on solving the

following problem:

ðP̂; θ̂Þ ¼ argmin
P;θ

jjs�Dθ½FM Pð ÞT �s�jj22 þ RðPÞ

where s represents the spectrum in discrete form, FM
denotes the forward modeling network (FMN), and P is
the filter structure parameter. Dθ represents the DNN
for spectral reconstruction with network parameters θ
and R(P) is the regularization term constraining the
structural parameters, which, in this case, includes the
thin-film thickness and coating angles. The initial para-
meters of P comprise 16 angles and 30 thicknesses. The
FMN maps the parameters P to the corresponding
spectral responses theoretically calculated from 30 layers
of SiO2 and TiO2 at 16 coating angles. By solving the
PCSED problem with a dataset of 1,000,000 spectra from
Computer Vision Laboratory (CAVE) and Inter-
disciplinary Computational Vision Laboratory (ICVL), a
set of structural parameters directly used by the coating
machine was obtained. Moreover, the DNN for spectral
reconstruction was also trained. All 16 filters were
coated for faster fabrication in a single deposition pro-
cess using an electronic beam evaporator (Optorun
OTFC-1300). More details on the filter fabrication are
available in Supplementary Information S11.

Visualization of hyperspectral image
The direct visualization of the hyperspectral image was

allowed by converting the spectra into CIEXYZ color
space by calculating the X, Y, and Z tristimulus values
according to:

X ¼ λ2
λ1
S λð Þx λð Þdλ

Y ¼ λ2
λ1
S λð Þy λð Þdλ

Z ¼ λ2
λ1
S λð Þz λð Þdλ

8
>>><

>>>:

where λ1 and λ2 represent the wavelength range, S λð Þ is
the spectrum of each pixel, and x, y, and z are the
standard observer color-matching functions. The cal-
culated (X, Y, Z) was further converted into an sRGB
color space to display using the MATLAB function
“xyz2rgb.”
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